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INCOMPRESSIBLE TURBULENCE
Robert S. Rogallo

Ames Research Center

SUMMARY

An algorithm and ILLTIAC computer program, developed for the simulation
of homogeneous incompressible turbulence in the presence of an applied mean
strain, are described. The turbulence field is represented spatially by
a truncated triple Fourier series (spectral method) and followed in time
using a fourth-order Runge~-Kutta algorithm. Several transformations are
applied to the numerical problem to enhance the basic algorithm. These
include

1. Transformation of variables suggested by Taylor's sudden-distortion
theory

2, Implicit viscous diffusion by use of an integrating factor

3. Implicit pressure calculation suggested by Taylor's sudden-
distortion theory

4, 1Inexpensive control of aliasing by random and phased coordinate
shifts

INTRODUCTION

The primary difficulty in the numerical simulation of homogeneous
turbulence is that the nonlinearity of the equations of fluid motion excites
a large range of scales (i.e., a large ratio of largest to smallest scale)
of motion in both space and time., The computer resource required for a
complete simulation is proportional to the product, over all space-time
dimensions, of the range of computed scales of each dimension. These scale
ranges increase with Reynolds number (R), and their product increases so
rapidly, in three space dimensions, that only the weakest experimentally
studied turbulence can be simulated completely on today's computers,

The overall range of scales continues to incrcase indefinitely with
Reynolds number. However, at a sufficiently high Reynolds number the scales
of motion can be grouped, in order of decreasing scale, into three distinct
ranges: the energy-containing range, the '"inertial' range, and the dissipa-
tion range (fig. 1). Further increases in Reynolds number increase only the
inertial range. The range of cnergy-containing scales, which determine the
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features of turbulence of engineering intercst, is bounded gy R-» e, and the
motion in thesc scales becomes Independent of the motlon at smaller scales,
At somewhat lower R, the Inertial and dissipation ranges merge, but still do
not affect the energy-containing range., At sufficiently low R, dissipatios:
occurs in the energy-containing range itself., This physical description

of the scale dependence upon Reynolds number is encouraging because it indi-
cates that, in principle, only the cnergy~containing scales of motifon need to
be included in a high Reynolds number turbulence simulation. The difficulty
is that, mathematically, all the scales are coupled through the nonlinear
terms in the governing equations and, although we know that physically

(L.e., statistically) the encrgy~-containing range i: uncoupled from the
smaller scales, we do not know how to uncouple it mathematically,

The range of statistically interdependent scales increases with the
anisotropy of the motion and, because most flows of engineering interest are
anisotropic, it is important to determine the nature and magnitude of the
additional computational difficulty posed by anisotropy.

THE NUMERICAL SIMULATION

The computational tool

presented here is an unsteady incompressible
Navier-Stokes code that runs

on the ILLIAC IV computer. The program computes
the evolution in time from an arbitrary homogeneous turbulence field in

the presence of a simple class of spatially-linear mean flows. The sirula-
tion is a spectral decomposition similar to that of Orszag (ref. 1) but
differing in detail. The Primary purpose of this report is to present the
simulation algorithm in detail sufficient to allow its use by others. The
program can be used as presented to study weak (low Reynolds number) turbu-
lence for which typical results are presented. The magnitude of the
computation (fig. 2) requires a computer at least as fast as a CDC-7600.

THE EQUATIONS OF MOTION

The equations governing the flow of a viscous cons

tant-density fluid are
the familiar Navier-Stokes equations

W
u, + (uu)x + (vu)y + (wu)z + Py = v(uxx + uyy + uzz)

v, + (uv)x + (vv)y + (wv)z + Py = \)(vxx + Voy tv, ) \ L
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where (u,v,w) Is the veloclty vector, p 15 the pressure-deasity ratio,
v 1s the kinematic viscosity, and subscripts denote differentiation.

We wish to simulate numerically the effect of a simple class of Lin-0sed
strains on a homogeneous field of turbulence, The strain ficld is given Ly

(u,v,w) = [xa(t),yb(t),zc(t)]

where a + b + ¢ = 0 as required by continuity. It is convenient to intro-
duce the following transformation of the dependent variables:

u = ax + Allzﬁ A
v = by + BI/ZG
(2)
w=cz + CI/ZQ ?
1 [/ da db de | .
p=- 5—[(EF + az)x2 + (EE-+ bz)y2 + (az-+ cz)z%] +p )

where a(t), b(t), and c(t) are the arbitrary time-dependent strain rates
imposed, and the resulting inverse square strains are

t
-2 a dt N\
A(t) = e I; '
t
-2 b dt
B(t) = e J; r (3)
t
cety - e-ZJ; c dt )

It follows from the continuity condition that material volumes are invariant,
(i.e., ABC = 1). Explicit spatial dependence of the resulting system of

equations is eliminated by the following transformation of independent
variables:

% = al/2yg
y = 8l/2y )
z = Cl/zz

The equations of motion for the transformed turbulence ficld arc then
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Tt is interesting to note that Taylor's theory (sce ref. 2) for the
sudden distortion of a turbulent field is particularly simple when expressed

in these transformed variables, because strain rate does not appear.
that a field of turbulence (state 1) is rapidly strained.

field (state 2) is defined as

s
@ 50 [T

where 1

Suppose
The resulting

dt , etc.

(o]

is a time characteristic of the imposed straining period.

Continuity must be satisfied throughout the straining process and, in

particular, in the initial and final states of strain.

strain imposed is given by its inverses
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As the strain becomes sudden (t -+ 0) A,B,C, 4, Vv, and w

their time derivatives do not.

equations (5) degenerate, as Tt - U,
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so that the velocity jump ir the transformed variables is
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Hence, if the total
A,B,C, we have

0 at ¢t

= 0 at t + 1

remain bounded but

During the straining process the momentum

irrotational,

oy
;{dt_u ¢§
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The continuity conditior then determines the potential as the solution
of

. y - ‘l) '(l) \'\g])
Acpﬁ),& + Bd‘;& F (,¢22 + va + ("”2

>
Mo~

which completes the solution for the velocity field at state 2,

The above transformations seem to be the natural ones for the study of
the effect of uniform imposed strain on a homogeneous turbulent field,
regardless of the rate at which the strain is imposed. A more general set of
transformations can be used when the mean strain-rate matrix is not diagonal,
and also when the mean vorticity is nonzero.

NUMERICAL APPROXIMATIONS

We wish to simulate a spatially homogeneous turbulence field in an
infinite space, and this suggests that we represent the field spatially as a
Fourier series. The resulting field is periodic in all three space
dimensions, with correspondingly periodic spatial correlations. However,
if these correlations decay %o negligible magnitude within the period,

(e.g., if the integral scale is much smaller than half the period), the error
duz to the finite period should be small. In practice this requirement is
difficult to satisfy with the resolution allowed by today's computers.

In this section we develop the equations in more detail and descr*be
the integration process as programmed. Let T, = aa, Tip = uv, Tyg = uw,
etc., tilde (~) denote the three-dimensional Fourier transform, and
kl' k,s k, be wave numbers in the X, §, and 2 directions, respectively.
The equations (5) in wave space are then

G, + 1k)AT) )+ 1k,BT), + 1kgCT , + 1kp = =v(Ak,? + Bk, + Ck,)d A
ve + kAT, + ik,BE,, + 1k,CT,, + 1k,P = =v(Ak,? + Bk,” + Ck,”)¥ (o)
we + 1k AT 4+ 1k BT, + 1k CT ;4 ik, = =v(Ak 2 + Bk,? + Ck,7)w

ik Au + 1k,Bv + ik Cw = 0 )

The linear terms are combined by multiplying the equations by the integrating
factor

(R
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\)klzf A dt \)kq"f B dt \)k./.r C dt
0 e O o 3 0

F(k,t) = e (7)
giving
d . ‘ L : g -
ar (Fu) + [{LklAr11 4 leBle + 1k36(11 + lklp} = Q
_g_ o ;' ~ - = RGN
ac (Fv) + ]{iklAT12 + ikZBTzz + ik301?3 + 1k?p} 0
(8)
d ~ . ~ ~ - -
qc (Fw) + F{lklAT13 + ikZBT23 + ik3L133 + ik3p} 0

1k A(FU) + 1k,B(F¥) + ik,C(Fw) =

i
o

Now multiply the first equation bz ikl, the second by 1k etc., to obtain
(let U = iklﬁ, V= ikzv, W= ik3w)

4 ey = 2p3 ~ = 252
It (FU) F{k1 A.11 + k1k2BT12 + k1k3LT13} + k, “Fp
K T > 2g> > 2p2
It (FV) = F{klszrlz + k2 Br,, + k2k3CT23} + k2 Fp ©
d 3y = - . ~ 205 2
I (FW) = F{k1k3AT13 + k2k3BT23 + k, CT33} + k3 Fp

A(FU) + B(FV) + C(FW) = 0

(The purpuse of this transformation of dependent variables is discussed
later on; note that kl,k?,k3 = 0 are special cases.)

The usual procedure for the computation of p requires the tine
differentiation of the continuity condition. However, we want the algorithm
to handle impulsive strains correctly (jumps in A, B, and C), that is,
according to Taylor's sudden distortion theory, s0 we need to avoid the
differentiation. We thus define a potential $ as

(§]

and absorb it into the time-advanced variables. Then
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% = Flk,k,AT , + K, B, + K,k CT, > (o)
92‘=HkkA? + Ko koBT, o + ka?CT o) J
dt 173713 273703 3 33
and the continuity condition becomes ‘
-
- _ ¢ + BY ;
; F,( AX + BY + CZ ) (an
Akl?- + Bk,? + Ck32
where
F X = U+ k2%
FIY = 7+ k,%§ (12)
F7'Z =0+ k%
The 1's are functions of u, v, w only, so that, if ﬁ, G, w are known

at the beginning of a time step and satisfy the continuity condition, we may !
advance X, Y, Z, However, to form time derivatives of the advanced X, ¥, 7
we must form from (12) advanced values of 4, v, w, and this requires the solu-
tion (11) for ¢ at the advanced time. This is done using the continuity
condition at the advanced time, and does not require its time differentiation.

At the beginning of a time step t = 0, and we have

F=1,¢=0,X=0,Y=V,2Z=w

The equations for X, Y, and Z are integrated over the time step, and the
final values are used in equaticas (11) and (12) to produce final values of
U, V, and W. The origin of time is then shifted to the final time giving the
proper initialization for the next time step.

Spatial differentiation is a point operator in wave space but multipiica- !

tion (e.g., %12 = uv) is not, and the most efficient means of forming the
Fourier transform of a product from the transforms of its terms is to return
to physical space by inverting the transforms, form the product, and then
transform the result back to wave space. Unfortunately, the transformation

of the product back to wave space introduces an error due to spectral
truncation,

»




The truncation vrrors are mest easily demonstrated In one spatial
dimepsion.  The representation of the product of two Fourler series a, b
(in complex form) as a Fourier serles ¢ is given by the (infinite)
convolution sum

However, the process of Inverting fInite transforms a and ﬂ, forming the
product ab, and then taking its f¥mife transform results instead in two
sums:

Ck = %; ak-—sbs + z; ak!M—sbs

The first sum represents a contribution (incomplete due to truncation) to ab
correctly attributed to wave number k. The second sum also represents a
contribution to ab, but it is actually a contribution not to k, but to

kiM, wave numbers beyond those allowed by the length (M) of the finite
transforms used. This is the "aliasing" error. Now it may be argued that
because aliasing errcrs do not account for all of the truncation error,
suppression of the aliasing error is not cost effective so far as accuracy is
concerned. Fowever, in the algorithm used here, the aliased ierms can lead
to nonlinear instability, and their control is essential.

R s~ o SIS

Now consider the effect of a shift of the physical coordinate system.
In wave space this amounts to multiplication by elkd, where -A 1is the

amount of coordinate shift. If we use elkd to shift Ak » Bk prior to

inverting them to physical space, furm the product ab on the shifted grid,

transform back to wave space, and finally shift coordinates back witi ce=1kA

we obtain
. . s HIMA o - -
“k _Z ak—sbe toe Zaki—M—sbs
s 5

The first (alias-free) sum is invariant under these shifts, but the second
sum, the aliased one which we wish to suppress, has a phase dependency on A !

and can be eliminated. For example, if two evaluations are made, one with f
1
e MA = 1 and the other with eiiMA = -1, the alias-free result is one-half

their sum, The second sum (which is multiplied by the phase factor) itself

vanishes identically for [k| < N, (N < M/3) if modes of a and b outside of a
this range are nulled prior to inversion, and transforms of length M aie !
retained. Thus two indcpendent procedures are available for alias suppression.,

L

The extension of these procedures to three dimensions gives for cach dk
eight terms, seven of which represent aliasing errors. The aliased terms
are (lassified according to the number of dimensions in which aliasing has

tiknAn
occurred. We then have [k = (ky, k., ks 0y = e
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¢ =8 (allas~free)

(singly-aliased)

+ 0,85 + 0§,
2t g

4

1 0 ,‘S,
+ OIU?S“ + U?OKSb + 040,85, (doubly=altased)
+0,0,0.8, (triply-aliascd)

All of the aliased sums (S], « + - 8,) vanish 1f modes having any ky > Nj
are nulled. The doubly and triply aliased sums (S, + + +» S,) vanish if
modes having any two kg > Ny are nulled, The triply aliased sum (s)
vanishes if modes having all three ky > N; are nulled. Alternatively once
can evaluate the convolution eight times using the eight combinations of

Oxs Bys» 6, = *1 and sum to eliminate the aliased terms. Note that suppres-
sion gy the latter means requires eight evaluations to eliminate all of the
aliased terms. One can also, as suggested by Orszag (ref. 1), remove

Sh’ .o S7 by truncation and the remaining single aliases by coordinate
shift with two evaluations. We are faced with the choice between losine
information (truncation) or losing computational speed (multiple evaluations).

We have, following Orszag, eliminated doubly and triply aliased sums
by truncation, though the truncation used here differs slightly from that of
Orszag who nulls modes having k + k > 2(M/3)2. We have not exactly
eliminated the remaining single aliases, due to the computational cost of
the double evaluations required. Instead we have used the fact that the
Runge-Kutta algorithm requires pairs of evaluations at each half step and
that by using a shifted grid for the second evaluation we reduce the total
alias error for the pair by a factor of At2. The possibility of nonlinear
instability is further reduced by insuring that the 63 for the first
evaluation in a pair are not correlated with those of other pairs. This is

easily accomplished by the use of a uniform-random-number generator during
computation of the phase factors.

DATA MANAGEMENT

In large simulations the high-speed random-access memory of the computer
cannot hold the entire data base of the problem (in the present code it holds
6% of it). 1In this case the high-speed memory may only be able to hold a few
lines of the mesh (e.g., all values of k, for a few k,, k3 values), and
it is convenient to transform and take derivatives only along those 1ines,

In general, separate passes over the data base are required for each spatial
dimension. The directional order in which operations are performed then
determines the required number of passes over the data basc. We will
demonstrate how this number may be reduced in a spectral algorithm.

Consider the evaluation in wave space of (V)% and (4V)y, which is

required in equation (5). The transforms of U and v are inverted in the
X, ¥, and Z directions, cach direction requiring a separate pass over the
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data basce,  On the last (z) pass of this sequence we also form, In physieal
space, the v product and then transtorm back to wave space In the

7 directlon, In principle there remadn only the x and v transforms and
the multiplications by ik, and {k to form the derivatives in the x and

y directions. The problem Is that, under our constraints, transforms and
derivatives can only be taken in the direction of the grid (Hnes held in

fast memory. Under these constralnts we must clther perform three transforms
and two derivatives in two passes, or two transforms and two derivatives In
three passes. 1If the constraint on the derfvative Ls absent the results can
be obtalned in two transforms and two derivatives in two passes, This
constraint can be removed only If four lines of the mesh can be held simul-
tancously in fast memory (so that all elght real numbers representing wave
number k are present)., The TLLIAC fast memory is sufficicently large to
accommodate four mesh lines, but not within a single processing element (PE),
so that differentiation would require communication across the PE's, We
have instead used a slightly altered set of dependent variables that avolds
this problem altogether.

If the X momentum equation is differentiated with respect to x, and
the y momentum equation with respect to ¥, the 0V stress term appears as
(GG)§§ in both equations, and its evaluation under the constraints requires
two transforms and two derivatives in two passes. But two extra integrations
(of Gi and G§) are then required to form G and Vv in physical space;
however, since integration and differentiation cost far less than either a
transform or an 1/0 pass, this method is quite efficient. To avoid loss,
upon differentiation, of information in a Fourier mode having a null wave
number we simply do not multiply that mode by its wave number (i.e., zero)
and similarly when we integrate it we do not divide by its wave number. What
this amounts to is that, instead of the usual spectral dependent variables

u(kl’kz’k3)
V(ky kK0
w(ky,k,,k,)
we use
G(O,kz,k3) , iklﬁ(kl,kz,k3) sk, #0
vk ,0,k,) 1k, vk, k, k), k, # 0

wiky,k,,0) ,  dkwk;,kyky) , ky # 0

Use of these variables simplifies the continulty condition and minimizes the
number of transforms and passes over the data basc.

10

-

i
|
|
i
|




TNTTIAL CONDITIONS

S AET O T m

The initial veloclities are chosen randomly, subject to the constraints
of continuity and a specified energy spectrum. In detall, the real and
imaginary parts of the Fourler velocity amplitudes u(k) are sclected ran-

; domly from a uniform distributlon over the circle that is the Intersection

{ of the sphere (having surface area proportional to 11(k)) determined by

i the desired cnergy spectrum and the plane (normal to k) determined by

/ continuity. Tor example, consider the (real) spectral mode (k,,k;,k; # 0)

; u, = f1 cos k;x sin kzy cos kgz -
| "

? vy = f2 cos klx sin k2y cos k,z

i w, = f3 cos klx sin kzy cos k,z

F The algorithm described previously advances the vector f in time given the
i initial values (k. ,k. ,k, = 0 are special cases)

f 1°°2°73

: kk

p 173

x - 2 2y=1/2

: f1 c(k1 + k2 ) kl(k2 cos P + " sin w)

1
[x)
]

1/2 k2k3
2 AN —— -
c(k1 + kz ) k2< o sin ¥ kl cos w)

k
1/2 %3
-c(kl2 + k?z) — sin ¢

E k

3

e e m——

where k2 = k.2 + k22 + qu, c? = [E(k)/2ﬂk2], and ¢ 1is a random number !
uniformly dis%ributed on the interval (0, 2m).

SCALING PROCEDURE

The simulation variables are nondimensional (integer wave numbers with
period 2w) and must be scaled to obtain dimensional values. If we wish to
simulate an experimental flow, knowing at the initial time only Its energy
spectrum Es(k,) and viscosity vg, we must use a similar energy spectrum
(i.e., differing only in cnergy and wave number scales) and specify a
simulation viscosity such that the dimensionless problems are the same. Thus
we define scale factors a, 8 relating the simulation energy E and wave
number k to the experimental values by

E(k)dk = aE_(k_ )dk, , ke = Bk

Here E and k are dimensionless, o has units L'2T2, and B has units
L"! so that time must scale as

11
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and the vigeosity as

v = a7y
(&)

ndg only on the seallng of the dependont varlables

of the problem and, since the computation allows an unlimited range for their
values, cnanges of o produce only changes of scale in the results,  This
would also be the case for £ i1 the computation allowed an unlimited range
of values for the independent variables (wave pumbers) . but such would require

infinite spatial resolution,

The scale factor « depe

The computer simulation does not, of course, have infinite resolution,
and the range of its independent variables is simply the value of its highest
nondimensional (inieger) wave number. Because the cntire experimental range
of length scales cannot be simulated, the choice of £ determines which
physical wave numbers of the experiment are to be simulated. Clcarly the
error of the simulation depends on this choice, but at present no rationale
is known for making it. The choice of Ferziger (ret. 3), for example, 1is
the scaling that allows the greatest total energy to be included in the
simulation. There is also, however, tae implicit constraint that the spatial
period be "much greater" than the integral scale of the turbulent field.

The number of modes, or degree of freedom of the motion, within a range
of scales (e.g., K < k < 2K) characterized by K 1is proportional to K3.
The different scale ranges of the motion are certainly not represented equally
well in the statistical sense. There are very few modes in the larger scales
(smaller wave numbers), and if the simulation is to represent turbulence we
must require that a small number of modes does not contain a large fraction
of the energy. This is equivalent to the integral length constraint.

1f the truncation error is to be small, the viscosity must be high
enough to damp the highest wave numbers of the calculation to the point where
they, and presumably also those lost by truncation, have negligible effect.
In other words, an accurate and complate solution requires that the computa-
tion resolve all scales of motionj; otherwise one must face the notorious
"olosure problem."” Since the simulation coue presented here contains no
closure approximations, 1t ic necessarily restricted to very low-turbulence

Reynolds numbers.

SAMPLE RESULTS

Several runs of the simulation code have been made for isotropic flow
to develop the algorithm and to obtain numerical error cstimates. Typical
energy spectra arc shown in figures 3-6. The algorithm used has neglipgible
numerical dissipation and, when the spatial resolution is truncated at any

12




finite wave number in an inviaseld (v = 0) fluld, the energy cascade eventually
leads to an equipartit loned stace (fig. 3) with the theoretical spectrum

(k) = ck?, This tendency 1s still apparent when molecular dissipation is
included (fig. 4) tf the range of computed scales does not include almost

all of the dissijation,
by increasing the range

of computed scales (fig,

More of the dissipation range can be included
of computed scales (fig. 5) or by shifting the range
6) to include more of the dissipation range.

13
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APPLENDIEX
THE TLLTAC PROGRAM

Program Structure

A fourth-order Runge-Kutta algorithu is used to integrate the system
of equations (10)-(12). The strain inverses A, B, C, and the integrating
factor F are considered known. The bulk of the computation 1s the evalua-
tion of the right side of (10), which is done in subroutines PHASEl, PHASE2,
and PHASE3. The dependent variables X,Y,Z, are then advanced in STEP, and
the continuity condition (11), is used by PRESSR to recover the physical
velocities (12). These five subprograms are called sequentially by the
contitrol routine LOOP which is responsible for data management and step
control,

The functions of processes called by these routines are given by
in-line comments in the listing.

Data Structure and Flow

The data base resides on disk and consists of two blocks. The first
block of data holds the velocity field at the beginning of a Runge-Kutta
step (three words/node) and a predicted velocity accumulator field
(three words/node). This block of data is always accessed sequentially.

The second block of data is working space (four words/node) in which the
right side of (10) is evaluated, requiring bhoth sequential and nonsequential
page accesses from the disk,

Each prediction within the Runge-Kutta process requires two complete
passes through the data base, one bringing (x,y) planes into core (PHASEl,
PHASE3, STEP, and PRESSR) for operators in the y direction, and one bring-
ing in (x,z) planes (PHASE2) for operators in the x and z directions. 1In
the latter pass, only the working space data block is required, allowing
the (x,z) planes to be handled by a triple buffered scheme.

Listing of Program

The program is coded for execution in 32-bit precision on the ILLIAC
computer. The routines listed in this appendix, which are coded in the CFD
language, cover the major algovithmic steps of the computation. Some of
the lower level routines are coded in assembly language (ASK) for efficiency,
and others had to be hand coded because of the restrictions placed on 32-bit
operation by the CFD language.
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NUMBER OF MESH CELLg 262144 (=g43)
DEPENDENT VARIABLES 786432 (=343
DATA BASE 2.62x 106 (=10 643,
FFT'S PER STEP 376832 (=423 42
COMPUTER TIME PER STEP 20 sec (REAL TIME)

COMPUTER TIME PER RUN 10 TO 30 min (REAL TIME)
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SPECTRAL (ALIAS—DAMPED)
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Figure 2,- Simulation program,
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Figure 3.- Evolution toward equipartitioned energy in inviscid energy-
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